Chapter 4: Reactions in Aqueous Solution

1. Which of the following compounds is a strong electrolyte?
A) $\mathrm{H}_{2} \mathrm{O}$
B) $\mathrm{CH}_{3} \mathrm{OH}$
C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
D) HF E) NaF
Ans: E Category: Easy Section: 4.1
2. Which of the following compounds is a weak electrolyte?
A) HNO_{3}
B) NaNO_{3}
C) HNO_{2}
D) NaNO_{2}
E) NaOH
Ans: C Category: Easy Section: 4.1
3. Which of the following compounds is a strong electrolyte?
A) $\mathrm{H}_{2} \mathrm{O}$
D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (ethanol)
B) N_{2}
E) KOH
C) $\mathrm{CH}_{3} \mathrm{COOH}$ (acetic acid)
Ans: E Category: Easy Section: 4.1
4. Which of the following compounds is a weak electrolyte?
A) HCl
B) $\mathrm{CH}_{3} \mathrm{COOH}$ (acetic acid)
C) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (glucose)
D) O_{2}
E) $\quad \mathrm{NaCl}$

Ans: B Category: Easy Section: 4.1
5. Which of the following compounds is a weak electrolyte?
A) HCl
B) $\mathrm{NH}_{3} \quad$ C) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (glucose)
D) N_{2} E) KCl

Ans: B Category: Easy Section: 4.1
6. Which of the following compounds is a nonelectrolyte?
A) NaF
D) NaOH
B) HNO_{3}
E) $\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (glucose)
C) $\mathrm{CH}_{3} \mathrm{COOH}$ (acetic acid)
Ans: E Category: Easy Section: 4.1
7. Which of the following compounds is a nonelectrolyte?
A) NaOH
D) KF
B) HNO_{3}
E) $\mathrm{CH}_{3} \mathrm{COOH}$ (acetic acid)
C) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ (ethanol)
Ans: C Category: Easy Section: 4.1
8. Identify the major ionic species present in an aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
A) $\mathrm{Na}_{2}{ }^{+}, \mathrm{CO}_{3}{ }^{2-}$
D) $\mathrm{Na}^{+}, \mathrm{C}^{+}, \mathrm{O}^{2-}$
B) $\mathrm{Na}_{2}{ }^{+}, \mathrm{C}^{2-}, \mathrm{O}_{3}$
E) $\mathrm{Na}^{+}, \mathrm{CO}_{3}{ }^{2-}$
C) $\mathrm{Na}^{+}, \mathrm{C}^{4+}, \mathrm{O}_{3}{ }^{2-}$
Ans: E Category: Easy Section: 4.1
9. Identify the major ionic species present in an aqueous solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$.
A) $\mathrm{K}^{2+}, \mathrm{S}^{6+}, \mathrm{O}_{4}{ }^{8-}$
D) $2 \mathrm{~K}^{+}, \mathrm{S}^{6+}, 4 \mathrm{O}^{2-}$
B) $\mathrm{K}^{2+}, \mathrm{S}^{6+}, 4 \mathrm{O}^{2-}$
E) $\quad 2 \mathrm{~K}^{+}, \mathrm{SO}_{4}{ }^{2-}$
C) $2 \mathrm{~K}^{+}, \mathrm{S}^{6+}, \mathrm{O}_{4}^{8-}$
Ans: E Category: Easy Section: 4.1
10. The distinguishing characteristic of all electrolyte solutions is that they
A) contain molecules.
D) always contain acids.
B) conduct electricity.
E) conduct heat.
C) react with other solutions.

Ans: B Category: Easy Section: 4.1
11. Based on the solubility rules, which one of the following compounds should be insoluble in water?
A) NaCl
B) MgBr_{2}
C) FeCl_{2}
D) AgBr
E) ZnCl

Ans: D Category: Easy Section: 4.2
12. Based on the solubility rules, which one of the following compounds should be insoluble in water?
A) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
B) BaSO_{4}
C) CuSO_{4}
D) MgSO_{4}
E) $\mathrm{Rb}_{2} \mathrm{SO}_{4}$
Ans: B Category: Easy Section: 4.2
13. Based on the solubility rules, which one of the following compounds should be insoluble in water?
A) CaCO_{3}
B) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
C) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D) $\mathrm{K}_{2} \mathrm{CO}_{3}$
E) KNO_{3}

Ans: A Category: Easy Section: 4.2
14. Based on the solubility rules, which one of the following should be soluble in water?
A) $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
B) $\mathrm{Na}_{2} \mathrm{~S}$
C) $\mathrm{Ag}_{2} \mathrm{CO}_{3}$
D) $\mathrm{Ag}_{2} \mathrm{~S}$
E) BaSO_{4}

Ans: B Category: Easy Section: 4.2
15. Based on the solubility rules, which one of the following should be soluble in water?
A) AgBr
B) AgCl
C) $\mathrm{Ag}_{2} \mathrm{CO}_{3}$
D) AgNO_{3}
E) $\mathrm{Ag}_{2} \mathrm{~S}$

Ans: D Category: Easy Section: 4.2
16. Based on the solubility rules, which one of the following should be soluble in water?
A) $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
B) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
C) AlPO_{4}
D) $\mathrm{Ag}_{3} \mathrm{PO}_{4}$
E) $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Ans: A Category: Easy Section: 4.2
17. Based on the solubility rules, which one of the following should be soluble in water?
A) CaSO_{4}
B) BaSO_{4}
C) PbSO_{4}
D) $\mathrm{K}_{2} \mathrm{SO}_{4}$
E) AgCl

Ans: D Category: Easy Section: 4.2
18. Based on the solubility rules, which of the following will occur when a solution containing about 0.1 g of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ is mixed with a solution containing 0.1 g of $\mathrm{KI}(\mathrm{aq}) / 100 \mathrm{~mL}$?
A) KNO_{3} will precipitate; Pb^{2+} and I^{-}are spectator ions.
B) No precipitate will form.
C) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ will precipitate; K^{+}and I^{-}are spectator ions.
D) $\quad \mathrm{PbI}_{2}$ will precipitate; K^{+}and $\mathrm{NO}_{3}{ }^{-}$are spectator ions.
E) $\quad \mathrm{Pb}^{2+}$ and I^{-}are spectator ions, and PbI_{2} will precipitate.

Ans: D Category: Medium Section: 4.2
19. Based on the solubility rules, which of the following will occur if solutions of $\mathrm{CuSO}_{4}(\mathrm{aq})$ and $\mathrm{BaCb}(\mathrm{aq})$ are mixed?
A) CuCl_{2} will precipitate; Ba^{2+} and $\mathrm{SO}_{4}{ }^{2-}$ are spectator ions.
B) CuSO_{4} will precipitate; Ba^{2+} and Cl are spectator ions.
C) BaSO_{4} will precipitate; Cu^{2+} and Cl are spectator ions.
D) $\mathrm{BaCl} 2_{2}$ will precipitate; Cu^{2+} and $\mathrm{SO}_{4}{ }^{2-}$ are spectator ions.
E) No precipitate will form.

Ans: C Category: Medium Section: 4.2
20. Based on the solubility rules, which of the following will occur when solutions of $\mathrm{ZnSO}_{4}(\mathrm{aq})$ and $\mathrm{MgCb}_{(\mathrm{aq})}$ are mixed?
A) $\quad \mathrm{ZnCl}_{2}$ will precipitate; Mg^{2+} and $\mathrm{SO}_{4}{ }^{2-}$ will be spectator ions.
B) $\quad \mathrm{ZnSO}_{4}$ will precipitate; Mg^{2+} and Cl will be spectator ions.
C) $\quad \mathrm{MgSO}_{4}$ will precipitate; Zn^{2+} and Cl will be spectator ions.

E) No precipitate will form.

Ans: E Category: Medium Section: 4.2
21. Which of the following is the correct net ionic equation for the reaction that occurs when solutions of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{NH}_{4} \mathrm{Cl}$ are mixed?
A) $\quad \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})+\mathrm{PbCl}_{2}(\mathrm{~s})$
B) $\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{PbCl}_{(\mathrm{s})}$
C) $\quad \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+2 \mathrm{NH}_{4}^{+}(\mathrm{aq})+2 \mathrm{Cr}(\mathrm{aq}) \rightarrow 2 \mathrm{NH}_{4}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+$ PbCl_{2} (s)
D) $\quad \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$
E) No reaction occurs when the solutions are mixed.

Ans: B Category: Medium Section: 4.2
22. The common constituent in all acid solutions is
A) H_{2}
B) $\mathrm{H}^{+} \quad$ C) OH^{-}
D) $\left.\mathrm{H}_{2} \mathrm{SO}_{4} \quad \mathrm{E}\right) \mathrm{C} \mathrm{\Gamma}$

Ans: B Category: Easy Section: 4.3
23. Which of the following compounds is a weak acid?
A) HF
B) HCl
C) HBr
D) HI E) HClO_{4}

Ans: A Category: Easy Section: 4.1
24. Identify the major ions present in an aqueous LiOH solution.
A) $\mathrm{Li}^{2+}, \mathrm{O}^{-}, \mathrm{H}^{-}$
B) $\mathrm{Li}^{+}, \mathrm{OH}^{-}$
C) $\mathrm{LiO}^{-}, \mathrm{H}^{+}$
D) $\mathrm{Li}^{+}, \mathrm{O}^{2-}, \mathrm{H}^{+}$
E) $\mathrm{Li}^{-}, \mathrm{OH}^{+}$

Ans: B Category: Easy Section: 4.3
25. Identify the major ions present in an aqueous HNO_{3} solution.
A) $\mathrm{HN}^{+}, \mathrm{O}^{2-}$
B) $\mathrm{OH}^{-}, \mathrm{NO}_{3}^{-}$
C) $\mathrm{OH}^{-}, \mathrm{NO}$
D) $\mathrm{H}^{+}, \mathrm{N}^{3-}, \mathrm{O}^{2-}$
E) $\mathrm{H}^{+}, \mathrm{NO}_{3}{ }^{-}$
Ans: E Category: Easy Section: 4.3
26. Identify the major ionic species present in an aqueous solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
A) $\mathrm{S}^{6+}, \mathrm{O}_{3}{ }^{6-}$ (plus $\mathrm{H}_{2} \mathrm{O}$ as a neutral species)
B) $\mathrm{H}^{+}, \mathrm{OH}^{-}, \mathrm{S}^{6+}, 3 \mathrm{O}^{2-}$
C) $2 \mathrm{H}^{+}, \mathrm{S}^{6+}, 4 \mathrm{O}^{2-}$
D) $\mathrm{H}^{+}, \mathrm{HSO}_{4}^{-}$
E) $2 \mathrm{H}^{+}, \mathrm{SO}_{4}{ }^{2-}$

Ans: D Category: Medium Section: 4.3
27. What is the correct formula of the salt formed in the neutralization reaction of hydrochloric acid with calcium hydroxide?
A) CaO
B) CaCb
C) CaH_{2}
D) CaCl E) CaClH

Ans: B Category: Medium Section: 4.3
28. What is the chemical formula of the salt produced by the neutralization of hydrobromic acid with magnesium hydroxide?
A) MgBr
B) $\mathrm{Mg}_{2} \mathrm{Br}_{3}$
C) $\mathrm{Mg}_{3} \mathrm{Br}_{2}$
D) $\mathrm{Mg}_{2} \mathrm{Br}$
E) MgBr_{2}

Ans: E Category: Medium Section: 4.3
29. What is the chemical formula of the salt produced by the neutralization of nitric acid with calcium hydroxide?
A) CaNO_{3}
B) $\mathrm{Ca}_{2}\left(\mathrm{NO}_{3}\right)_{3}$
C) $\mathrm{Ca}_{3}\left(\mathrm{NO}_{3}\right)_{2}$
D) $\mathrm{Ca}_{2} \mathrm{NO}_{3}$
E) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$

Ans: E Category: Medium Section: 4.3
30. What is the chemical formula of the salt produced by the complete neutralization of sodium hydroxide with sulfuric acid?
A) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
B) $\mathrm{Na}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
C) $\mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}$
D) NaSO_{3}
E) $\mathrm{Na}_{3} \mathrm{SO}_{4}$

Ans: A Category: Medium Section: 4.3
31. What is the chemical formula of the salt produced by the neutralization of potassium hydroxide with sulfuric acid?
A) KSO_{3}
B) $\mathrm{K}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
C) $\mathrm{K}_{2} \mathrm{SO}_{4}$
D) $\mathrm{K}\left(\mathrm{SO}_{4}\right)_{2}$
E) KSO_{4}

Ans: C Category: Medium Section: 4.3
32. The oxidation number of N in NaNO_{3} is
A) +6
B) +5
C) +3
D) -3
E) None of the above.

Ans: B Category: Medium Section: 4.4
33. The oxidation number of S in $\mathrm{K}_{2} \mathrm{SO}_{4}$ is
A) +6
B) +4
C) +2
D) -1
E) None of the above.

Ans: A Category: Medium Section: 4.4
34. The oxidation number of Mn in KMnO_{4} is
A) +8
B) +7
C) $+5 \quad$ D) -7
E) -8

Ans: B Category: Medium Section: 4.4
35. The oxidation number of Fe in $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ is
$\begin{array}{llll}\text { A) }+3 & \text { B) }+2 & \text { C) }+1 & \text { D) }-3\end{array}$ E) -4
Ans: A Category: Medium Section: 4.4
36. The oxidation number of Cr in $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ is
A) -12
B) -7
C) -2
D) $+6 \quad \mathrm{E})+7$

Ans: D Category: Medium Section: 4.4
37. The oxidation number of $\mathrm{Cl}^{\text {in }} \mathrm{ClO}_{3}{ }^{-}$is
A) -1
B) +7
C) $+5 \quad \mathrm{D})+3$
E) None of the above.

Ans: C Category: Medium Section: 4.4
38. The oxidation number of Cl in ClO_{4}^{-}is
A) -1
B) +1
C) +3
D) +5
E) None of the above.

Ans: E Category: Medium Section: 4.4
39. The highest possible oxidation number of nitrogen is
A) +8
B) +5
C) +3
D) +1
E) -3

Ans: B Category: Medium Section: 4.4
40. For which one of the following acids is chlorine in the +5 oxidation state?
A) HCl
B) HClO
C) HClO_{2}
D) HClO_{3}
E) HClO_{4}

Ans: D Category: Medium Section: 4.4
41. The highest possible oxidation number of carbon is
A) +8
B) +6
C) +4
D) +2
E) -4

Ans: C Category: Medium Section: 4.4
42. Select the compound in which sulfur has its highest possible oxidation number.
A) $\mathrm{H}_{2} \mathrm{~S}$
B) SO_{2}
C) SCl_{2}
D) $\mathrm{H}_{2} \mathrm{SO}_{3}$
E) $\mathrm{Na}_{2} \mathrm{SO}_{4}$

Ans: E Category: Medium Section: 4.4
43. The oxidation number of N in $\mathrm{N}_{2} \mathrm{H}_{4}$ is
A) +4
B) -4
C) +2
D) $-2 \quad$ E) 0

Ans: D Category: Medium Section: 4.4
44. Which choice gives the correct oxidation numbers for all three elements in $\mathrm{Rb}_{2} \mathrm{SO}_{3}$ in the order that the elements are shown in the formula?
A) $-2,+6,-2$
B) $-1,+4,-3$
C) $+2,+4,-2$
D) $+1,+4,-2$
E) $+1,+6,-6$

Ans: D Category: Medium Section: 4.4
45. Which choice gives the correct oxidation numbers for all three elements in $\mathrm{Ca}(\mathrm{ClO})_{2}$ in the order that the elements are shown in the formula?
A) $+2,+1,-2$
B) $+2,-2,+1$
C) $+2,-3,+2$
D) $-2,+2,-1$
E) $-2,+3,-2$

Ans: A Category: Medium Section: 4.4
46. In the following redox reaction
$4 \mathrm{NH}_{3}+3 \mathrm{Ca}(\mathrm{ClO})_{2} \rightarrow 2 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CaCl}_{2}$
which element is oxidized and which is reduced?
A) H is oxidized and N is reduced
B) N is oxidized and Cl is reduced
D) Cl is oxidized and O is reduced
E) $\quad \mathrm{Cl}$ is oxidized and N is reduced
C) $\quad \mathrm{N}$ is oxidized and O is reduced

Ans: B Category: Medium Section: 4.4
47. Which one of the following is a redox reaction?
A) $\quad 2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
B) $2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{PbBr}_{2}(\mathrm{~s})$
C) $\mathrm{CaBr}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{g})$
D) $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
E) $\quad \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$

Ans: A Category: Medium Section: 4.4
48. Which of the following equations does not represent an oxidation-reduction reaction?
A) $3 \mathrm{Al}+6 \mathrm{HCl} \rightarrow 3 \mathrm{H}_{2}+\mathrm{AlCl}_{3}$
B) $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
C) $2 \mathrm{NaCl}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbCl}_{2}+3 \mathrm{NaNO}_{3}$
D) $2 \mathrm{NaI}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{NaBr}+\mathrm{I}_{2}$
E) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Zn} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Cu}$

Ans: C Category: Medium Section: 4.4
49. In the following chemical reaction the oxidizing agent is
$5 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2}$
A) $\mathrm{H}_{2} \mathrm{O}_{2}$
B) MnO_{4}^{-}
C) H^{+}
D) Mn^{2+} E) O_{2}

Ans: B Category: Difficult Section: 4.4
50. In the following chemical reaction the oxidizing agent is
$5 \mathrm{~S}+6 \mathrm{KNO}_{3}+2 \mathrm{CaCO}_{3} \rightarrow 3 \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{CaSO}_{4}+\mathrm{CO}_{2}+3 \mathrm{~N}_{2}$
A) S
B) N_{2}
C) KNO_{3}
D) CaSO_{4}
E) CaCO_{3}

Ans: C Category: Difficult Section: 4.4
51. Identify the oxidizing agent in the following chemical reaction.
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{O}$
A) MnO_{4}^{-}
B) $\mathrm{H}_{2} \mathrm{SO}_{3}$
C) Mn^{2+}
D) $\mathrm{SO}_{4}{ }^{2-}$
E) H^{+}

Ans: A Category: Difficult Section: 4.4
52. Identify the reducing agent in the following chemical reaction.
$5 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 5 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
A) Fe^{2+}
B) MnO_{4}^{-}
C) H^{+}
D) Mn^{2+}
E) Fe^{3+}

Ans: A Category: Difficult Section: 4.4
53. Identify the reducing agent in the following chemical reaction.
$\mathrm{Cd}+\mathrm{NiO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cd}(\mathrm{OH})_{2}+\mathrm{Ni}(\mathrm{OH})_{2}$
A) Cd
B) NiO_{2}
C) $\mathrm{H}_{2} \mathrm{O}$
D) $\mathrm{Cd}(\mathrm{OH})_{2}$
E) $\mathrm{Ni}(\mathrm{OH})_{2}$

Ans: A Category: Difficult Section: 4.4
54. What element is oxidized in the following chemical reaction?
$3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$
A) Cu
B) H
C) N
D) O
E) $\mathrm{H}_{2} \mathrm{O}$

Ans: A Category: Medium Section: 4.4
55. What element is oxidized in the following chemical reaction?
$\mathrm{NiO}_{2}+\mathrm{Cd}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}+\mathrm{Cd}(\mathrm{OH})_{2}$
A) Ni
B) $\mathrm{Cd} \quad \mathrm{C}) \mathrm{O}$
D) H
E) This is not a redox reaction.

Ans: B Category: Medium Section: 4.4
56. What element is oxidized in the following chemical reaction?
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Cd}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CdSO}_{4}$
$\begin{array}{lllll}\text { A) } \mathrm{H} & \text { B) } \mathrm{S} & \text { C) } \mathrm{O} & \text { D) } \mathrm{Cd} & \mathrm{E}) \text { this is not a redox reaction }\end{array}$
Ans: E Category: Medium Section: 4.4
57. What element is reduced in the following chemical reaction?
$\mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
A) Cu
B) H
C) S
D) O
E) $\mathrm{H}_{2} \mathrm{O}$

Ans: C Category: Medium Section: 4.4
58. Identify the elements that are oxidized and reduced in the following reaction.
$\mathrm{KClO}_{3}(\mathrm{aq})+6 \mathrm{HBr}(\mathrm{aq}) \rightarrow \mathrm{KCl}(\mathrm{aq})+3 \mathrm{Br}_{2}(\mathrm{l})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
A) Br is oxidized and Cl is reduced $\quad \mathrm{D}) \quad \mathrm{O}$ is oxidized and Cl is reduced
B) Cl is oxidized and H is reduced \quad E) Cl is oxidized and Br is reduced
C) H is oxidized and O is reduced

Ans: A Category: Medium Section: 4.4
59. Predict the products of the following single replacement reaction.
$\mathrm{Fe}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow$
A) $\mathrm{Cu}(\mathrm{s})+\mathrm{FeSO}_{4}(\mathrm{aq})$
B) $\mathrm{Fe}(\mathrm{s})+\mathrm{Cu}(\mathrm{s})+\mathrm{SO}_{4}(\mathrm{aq})$
D) $\mathrm{FeCuSO}_{4}(\mathrm{aq})$
E) $\quad \mathrm{FeO}(\mathrm{s})+\mathrm{CuSO}_{3}(\mathrm{aq})$
C) $\mathrm{CuS}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{SO}_{4}(\mathrm{aq})$

Ans: A Category: Medium Section: 4.4
60. Which of the following is an example of a disproportionation reaction?
A) $\quad 2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B) $2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Cb}(\mathrm{g}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})$
C) $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
D) $\mathrm{CaBr}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{g})$
E) $\quad 2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$

Ans: C Category: Medium Section: 4.4
61. Which of the following represents a metal displacement reaction?
A) $\quad 2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$
B) $\quad \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{s}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
C) $\quad 3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})$
D) $2 \mathrm{P}(\mathrm{s})+3 \mathrm{Cb}(\mathrm{g}) \rightarrow 2 \mathrm{PCl}_{3}(\mathrm{~g})$
E) $\quad 2 \mathrm{ZnS}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{ZnO}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g})$

Ans: B Category: Easy Section: 4.4
62. Which of the following represents a halogen displacement reaction?
A) $\quad 2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Cb}(\mathrm{g}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})$
B) $\quad 2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
C) $\quad \mathrm{CaBr}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{g})$
D) $\quad 2 \mathrm{KNO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$
E) $\quad 2 \mathrm{LiOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Li}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Ans: A Category: Easy Section: 4.4
63. Which of the following represents a precipitation reaction?
A) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B) $\mathrm{CaBr}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{g})$
C) $2 \mathrm{KNO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$
D) $2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Cb}(\mathrm{g}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})$
E) $\quad 2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$

Ans: B Category: Easy Section: 4.2
64. Which of the following represents an acid-base neutralization reaction?
A) $\quad 2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
B) $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{~g})$
C) $\quad \mathrm{LiOH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{LiNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
D) $2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Cb}(\mathrm{g}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})$
E) $\mathrm{CaBr}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{g})$

Ans: C Category: Medium Section: 4.4
65. Which of the following represents a hydrogen displacement reaction?
A) $\quad 2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B) $2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Cl}(\mathrm{g}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})$
C) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D) $\quad \mathrm{CaBr}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{g})$
E) $\quad 2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$

Ans: E Category: Medium Section: 4.4
66. Which of the following represents a combustion reaction?
A) $\quad 2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B) $\quad \mathrm{LiOH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{LiNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
C) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D) $\quad 2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
E) $\quad 2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$

Ans: A Category: Easy Section: 4.4
67. What mass of $\mathrm{K}_{2} \mathrm{CO}_{3}$ is needed to prepare 200 . mL of a solution having a potassium ion concentration of 0.150 M ?
A) 4.15 g
B) 10.4 g
C) 13.8 g
D) 2.07 g
E) 1.49 g

Ans: D Category: Medium Section: 4.5
68. What mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is needed to prepare 350 mL of a solution having a sodium ion concentration of 0.125 M ?
A) 3.11 g
B) 24.9 g
C) 12.4 g
D) 6.21 g
E) 8.88 g

Ans: A Category: Medium Section: 4.5
69. What mass of $\mathrm{Li}_{3} \mathrm{PO}_{4}$ is needed to prepare 500 . mL of a solution having a lithium ion concentration of 0.175 M ?
A) 6.75 g
B) 10.1 g
C) 19.3 g
D) 30.4 g
E) 3.38 g

Ans: E Category: Medium Section: 4.5
70. A 50.0 mL sample of $0.436 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$ is diluted with water to a total volume of 250.0 mL . What is the ammonium nitrate concentration in the resulting solution?
A) 21.8 M
B) 0.459 M
C) $2.18 \times 10^{-2} \mathrm{M}$
D) $8.72 \times 10^{-2} \mathrm{M}$
E) 0.109 M

Ans: D Category: Medium Section: 4.5
71. A 20.00 mL sample of 0.1015 M nitric acid is introduced into a flask, and water is added until the volume of the solution reaches $250 . \mathrm{mL}$. What is the concentration of nitric acid in the final solution?
A) $\quad 1.27 \mathrm{M}$
B) $8.12 \times 10^{-3} \mathrm{M}$
D) $\quad 3.25 \times 10^{-2} \mathrm{M}$
E) $\quad 5.08 \times 10^{-4} \mathrm{M}$
C) $\quad 0.406 \mathrm{M}$

Ans: B Category: Medium Section: 4.5
72. A 3.682 g sample of KClO_{3} is dissolved in enough water to give $375 . \mathrm{mL}$ of solution. What is the chlorate ion concentration in this solution?
A) $3.00 \times 10^{-2} \mathrm{M}$
B) $4.41 \times 10^{-2} \mathrm{M}$
D) $1.65 \times 10^{-2} \mathrm{M}$
E) $\quad 8.01 \times 10^{-2} \mathrm{M}$
C) 0.118 M

Ans: E Category: Medium Section: 4.5
73. A 4.691 g sample of MgCl_{2} is dissolved in enough water to give 750 mL of solution. What is the magnesium ion concentration in this solution?
A) $\quad 3.70 \times 10^{-2} \mathrm{M}$
B) $1.05 \times 10^{-2} \mathrm{M}$
D) $4.93 \times 10^{-2} \mathrm{M}$
E) $\quad 0.131 \mathrm{M}$
C) $\quad 6.57 \times 10^{-2} \mathrm{M}$

Ans: C Category: Medium Section: 4.5
74. A 0.9182 g sample of CaBr_{2} is dissolved in enough water to give 500 mL of solution. What is the calcium ion concentration in this solution?
A) $9.19 \times 10^{-3} \mathrm{M}$
B) $2.30 \times 10^{-3} \mathrm{M}$
D) $4.59 \times 10^{-3} \mathrm{M}$
E) $\quad 1.25 \times 10^{-3} \mathrm{M}$
C) $2.72 \times 10^{-3} \mathrm{M}$

Ans: A Category: Medium Section: 4.5
75. 35.0 mL of 0.255 M nitric acid is added to 45.0 mL of $0.328 \mathrm{M} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$. What is the concentration of nitrate ion in the final solution?
A) 0.481 M
B) 0.296 M
C) 0.854 M
D) 1.10 M
E) 0.0295 M

Ans: A Category: Difficult Section: 4.5
76. 17.5 mL of a $0.1050 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution is added to 46.0 mL of 0.1250 M NaCl . What is the concentration of sodium ion in the final solution?
A) 0.205 M
B) 0.119 M
C) 0.539 M
D) 0.148 M
E) 0.165 M

Ans: D Category: Difficult Section: 4.5
77. 25.0 mL of a $0.2450 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ solution is added to 55.5 mL of $0.1655 \mathrm{M} \mathrm{FeCl}_{3}$. What is the concentration of chloride ion in the final solution?
A) 0.607 M
B) 0.418 M
C) 1.35 M
D) 0.190 M
E) 0.276 M

Ans: B Category: Difficult Section: 4.5
78. When 38.0 mL of $0.1250 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is added to 100 . mL of a solution of PbI_{2}, a precipitate of PbSO_{4} forms. The PbSO_{4} is then filtered from the solution, dried, and weighed. If the recovered PbSO_{4} is found to have a mass of 0.0471 g , what was the concentration of iodide ions in the original solution?
A) $\quad 3.10 \times 10^{-4} \mathrm{M}$
B) $1.55 \times 10^{-4} \mathrm{M}$
D) $\quad 3.11 \times 10^{-3} \mathrm{M}$
E) $\quad 1.55 \times 10^{-3} \mathrm{M}$
C) $\quad 6.20 \times 10^{-3} \mathrm{M}$

Ans: D Category: Difficult Section: 4.6
79. When 50.0 mL of a $0.3000 \mathrm{M} \mathrm{AgNO}_{3}$ solution is added to 50.0 mL of a solution of MgCb , an AgCl precipitate forms immediately. The precipitate is then filtered from the solution, dried, and weighed. If the recovered AgCl is found to have a mass of 0.1183 g , what as the concentration of magnesium ions in the original MgCb solution?
A) 0.300 M
B) $8.25 \times 10^{-3} \mathrm{M}$
D) $2.06 \times 10^{-5} \mathrm{M}$
E) $\quad 4.13 \times 10^{-3} \mathrm{M}$
C) $1.65 \times 10^{-2} \mathrm{M}$

Ans: B Category: Difficult Section: 4.6
80. When 20.0 mL of a $0.250 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$ solution is added to 150.0 mL of a solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$, a CuS precipitate forms. The precipitate is then filtered from the solution, dried, and weighed. If the recovered CuS is found to have a mass of 0.3491 g , what was the concentration of copper ions in the original $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ solution?
A) $3.65 \times 10^{-3} \mathrm{M}$
B) $1.22 \times 10^{-2} \mathrm{M}$
D) $4.87 \times 10^{-2} \mathrm{M}$
E) $\quad 2.43 \times 10^{-2} \mathrm{M}$
C) $3.33 \times 10^{-2} \mathrm{M}$

Ans: E Category: Difficult Section: 4.6
81. 34.62 mL of 0.1510 M NaOH was needed to neutralize 50.0 mL of an $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution. What is the concentration of the original sulfuric acid solution?
A) 0.0229 M
B) 0.218 M
C) 0.0523 M
D) $0.209 \mathrm{M} \quad$ E) 0.105 M

Ans: C Category: Medium Section: 4.7
82. The concentration of oxalate ion $\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right)$ in a sample can be determined by titration with a solution of permanganate ion $\left(\mathrm{MnO}_{4}{ }^{-}\right)$of known concentration. The net ionic equation for this reaction is
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2}$
A 30.00 mL sample of an oxalate solution is found to react completely with 21.93 mL of a 0.1725 M solution of MnO_{4}^{-}. What is the oxalate ion concentration in the sample?
A) 0.02914 M
B) 0.4312 M
C) 0.1821 M
D) 0.3152 M
E) 0.05044 M
Ans: D Category: Medium Section: 4.8
83. One method of determining the concentration of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ in a solution is through titration with iodide ion. The net ionic equation for this reaction is
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \Gamma+2 \mathrm{H}^{+} \rightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
A 50.00 mL sample of a hydrogen peroxide solution is found to react completely with 37.12 mL of a 0.1500 M KI solution. What is the concentration of hydrogen peroxide in the sample?
A) $\quad 5.568 \times 10^{-2} \mathrm{M}$
B) 0.2227 M
D) $\quad 0.4041 \mathrm{M}$
E) $\quad 0.1114 \mathrm{M}$
C) $\quad 0.1010 \mathrm{M}$

Ans: A Category: Medium Section: 4.8
84. Zinc dissolves in hydrochloric acid to yield hydrogen gas:
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
What mass of hydrogen gas is produced when a 7.35 g chunk of zinc dissolves in 500. mL of 1.200 M HCl ?
A) 0.605 g
B) 0.113 g
C) 0.302 g
D) 0.453 g
E) 0.227 g

Ans: E Category: Medium Section: 4.8
85. Zinc dissolves in hydrochloric acid to yield hydrogen gas:
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
When a 12.7 g chunk of zinc dissolves in $500 . \mathrm{mL}$ of 1.450 M HCl , what is the concentration of hydrogen ions remaining in the final solution?
A) 0.776 M
B) 0.388 M
C) 0.674 M
D) 1.06 M
E) 0 M

Ans: C Category: Medium Section: 4.8
86. Lithium metal dissolves in water to yield hydrogen gas and aqueous lithium hydroxide. What is the final concentration of hydroxide ions when 5.500 g of lithium metal is dropped into $750 . \mathrm{mL}$ of water?
A) 1.06 M
B) 0.528 M
C) 2.11 M
D) 0.792 M
E) 0.943 M

Ans: A Category: Medium Section: 4.8
87. When solid iron(II) hydroxide is added to water, the resulting solution contains $1.4 \times 10^{-3} \mathrm{~g}$ of dissolved iron(II) hydroxide per liter of solution. What is the hydroxide ion concentration in this solution?
A) $7.8 \times 10^{-6} \mathrm{M}$
B) $\quad 1.6 \times 10^{-5} \mathrm{M}$
D) $\quad 3.1 \times 10^{-5} \mathrm{M}$
E) $\quad 4.0 \times 10^{-3} \mathrm{M}$
C) $\quad 2.5 \times 10^{-10} \mathrm{M}$

Ans: D Category: Difficult Section: 4.5
88. A $250 . \mathrm{mL}$ sample of 0.0328 M HCl is partially neutralized by the addition of $100 . \mathrm{mL}$ of 0.0245 M NaOH . Find the concentration of hydrochloric acid in the resulting solution.
A) 0.00700 M
B) 0.0164 M
C) 0.0383 M
D) 0.0230 M
E) 0.0575 M
Ans: B Category: Difficult Section: 4.7
89. A $350 . \mathrm{mL}$ sample of $0.276 \mathrm{M} \mathrm{HNO}_{3}$ is partially neutralized by 125 mL of 0.0120 M $\mathrm{Ca}(\mathrm{OH})_{2}$. Find the concentration of nitric acid in the resulting solution.
A) 0.210 M
B) 0.00632 M
C) 0.203 M
D) 0.0240 M
E) 0.197 M

Ans: E Category: Difficult Section: 4.7
90. 158 mL of a 0.148 M NaCl solution is added to 228 mL of a $0.369 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$ solution. The concentration of ammonium ions in the resulting mixture is
A) 0.157 M
B) 0.218 M
C) 0.625 M
D) 0.369 M
E) 0 M

Ans: B Category: Medium Section: 4.5
91. 1.40 g of silver nitrate is dissolved in 125 mL of water. To this solution is added 5.00 mL of 1.50 M hydrochloric acid, and a precipitate forms. Find the concentration of silver ions remaining in solution.
A) $\quad 5.7 \times 10^{-3} \mathrm{M}$
B) $\quad 6.34 \times 10^{-2} \mathrm{M}$
D) $\quad 0.121 \mathrm{M}$
E) $\quad 5.9 \times 10^{-3} \mathrm{M}$
C) $\quad 5.77 \times 10^{-2} \mathrm{M}$

Ans: A Category: Difficult Section: 4.6
92. Calcium sulfate dihydrate (commonly known as gypsum) dissolves in cold water to the extent of 0.241 g per $100 . \mathrm{cm}^{3}$. What is the concentration of calcium ions in this solution?
A) $\quad 1.77 \times 10^{-2} \mathrm{M}$
B) $\quad 2.80 \times 10^{-2} \mathrm{M}$
D) $\quad 3.54 \times 10^{-2} \mathrm{M}$
E) $\quad 1,40 \times 10^{-2} \mathrm{M}$
C) $\quad 1.77 \times 10^{-3} \mathrm{M}$

Ans: E Category: Difficult Section: 4.5
93. Calcium nitrate tetrahydrate dissolves in cold water to the extent of 266 g per $100 . \mathrm{cm}^{3}$. What is the concentration of nitrate ions in this solution?
A) 32.4 M
$\begin{array}{ll}\text { B) } 22.5 \mathrm{M} & \text { C) } 11.3 \mathrm{M}\end{array}$
D) 16.2 M
E) 8.10 M

Ans: B Category: Difficult Section: 4.5
94. Define solution, solute, and solvent.

Ans: A solution is a homogeneous mixture of two or more substances.
The substance present in a smaller amount is called the solute, while the substance present in the larger amount is called the solvent.
Category: Easy Section: 4.1
95. Identify the following compound as an electrolyte or nonelectrolyte: NaOH .

Ans: electrolyte
Category: Easy Section: 4.1
96. Identify the following compound as an electrolyte or nonelectrolyte: $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Ans: electrolyte
Category: Easy Section: 4.1
97. Identify the following compound as an electrolyte or nonelectrolyte: Methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$. Ans: nonelectrolyte
Category: Easy Section: 4.1
98. Identify the following compound as an electrolyte or nonelectrolyte: $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ (sucrose).

Ans: nonelectrolyte
Category: Easy Section: 4.1
99. Identify the following compound as an electrolyte or nonelectrolyte: MgCl_{2}.

Ans: electrolyte
Category: Easy Section: 4.1
100. Identify the following compound as a strong electrolyte, weak electrolyte, or nonelectrolyte: $\mathrm{CH}_{3} \mathrm{OH}$ (methanol).
Ans: nonelectrolyte
Category: Easy Section: 4.1
101. Identify the following compound as a strong electrolyte, weak electrolyte, or nonelectrolyte: $\mathrm{CH}_{3} \mathrm{COOH}$.
Ans: weak electrolyte
Category: Easy Section: 4.1
102. Identify the following compounds as a strong electrolytes, weak electrolytes, or nonelectrolytes: $\mathrm{KNO}_{3}, \mathrm{KNO}_{2}, \mathrm{HNO}_{3}, \mathrm{HNO}_{2}$, Ans: $\mathrm{KNO}_{3}, \mathrm{KNO}_{2}$, and HNO_{3} are strong electrolytes; HNO_{2} is a weak electrolyte. Category: Medium Section: 4.3
103. Identify the following compound as a strong electrolyte, weak electrolyte, or nonelectrolyte: NH_{3}.
Ans: weak electrolyte
Category: Medium Section: 4.1
104. Identify the following compound as a strong electrolyte, weak electrolyte, or nonelectrolyte: $\mathrm{NH}_{4} \mathrm{Cl}$.
Ans: strong electrolyte
Category: Easy Section: 4.1
105. Define and illustrate with an example the difference between an electrolyte and a nonelectrolyte.
Ans: (Answers will vary.) An electrolyte is a substance that, when dissolved in water, results in a solution that can conduct electricity. An example is sodium hydrogen carbonate. A nonelectrolyte does not conduct electricity when dissolved in water.
An example would be sugar.
Category: Medium Section: 4.1
106. Define precipitate and illustrate with an example.

Ans: (Answers will vary.) A precipitate is an insoluble solid that separates from a solution.
$\mathrm{CoCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{CoCO}_{3}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})$
In this reaction, CoCO_{3} is a precipitate.
Category: Medium Section: 4.2
107. Give an example of a monoprotic acid.

Ans: HNO_{3} (for example)
Category: Easy Section: 4.3
108. Give an example of a diprotic acid.

Ans: $\mathrm{H}_{2} \mathrm{CO}_{3}$ (for example)
Category: Easy Section: 4.3
109. Name and give the formulas for six strong acids.

Ans: hydrochloric acid, HCl ; hydrobromic acid, HBr ; hydroiodic acid, HI ; nitric acid, HNO_{3}; sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$; perchloric acid, HClO_{4}
Category: Easy Section: 4.3
110. Give an example of a triprotic acid.

Ans: $\mathrm{H}_{3} \mathrm{PO}_{4}$
Category: Easy Section: 4.3
111. Write the net ionic equation for the following reaction. Aqueous iron(III) sulfate is added to aqueous sodium sulfide to produce solid iron(III) sulfide and aqueous sodium sulfate.
Ans: $2 \mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{~S}^{2-}(\mathrm{aq}) \rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3}(\mathrm{~s})$
Category: Medium Section: 4.2
112. Determine the oxidation number of each of the elements in $\mathrm{Cs}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$?

Ans: the oxidation number of Cs is +1 ; the oxidation number of Cr is +6 ; the oxidation number of O is -2
Category: Easy Section: 4.4
113. Identify the element being oxidized in the following reaction.
$4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$
Ans: Al
Category: Medium Section: 4.4
114. Identify the element being reduced in the following reaction.
$4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$
Ans: O
Category: Medium Section: 4.4
115. Identify the oxidizing agent in the following reaction.
$4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$
Ans: O_{2}
Category: Medium Section: 4.4
116. Identify the reducing agent in the following reaction.
$4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$
Ans: Al
Category: Medium Section: 4.4
117. Identify the element being oxidized in the following reaction.
$2 \mathrm{KBr}+\mathrm{F}_{2} \rightarrow \mathrm{Br}_{2}+2 \mathrm{KF}$
Ans: Br
Category: Medium Section: 4.4
118. Identify the element being reduced in the following reaction.
$2 \mathrm{KBr}+\mathrm{F}_{2} \rightarrow \mathrm{Br}_{2}+2 \mathrm{KF}$
Ans: F
Category: Medium Section: 4.4
119. Identify the oxidizing agent in the following reaction.
$2 \mathrm{KBr}+\mathrm{F}_{2} \rightarrow \mathrm{Br}_{2}+2 \mathrm{KF}$
Ans: F_{2}
Category: Medium Section: 4.4
120. Identify the reducing agent in the following reaction.
$2 \mathrm{KBr}+\mathrm{F}_{2} \rightarrow \mathrm{Br}_{2}+2 \mathrm{KF}$
Ans: Br^{-}(or KBr)
Category: Medium Section: 4.4
121. Determine the oxidation number of each of the elements BaNaPO_{4} ?

Ans: the oxidation number of $\mathrm{Ba}+2$; the oxidation number of Na is +1 ; the oxidation number of P is +5 ; the oxidation number of O is -2
Category: Easy Section: 4.4
122. Determine the oxidation number of each of the elements in $\mathrm{K}_{2} \mathrm{TaF}_{7}$?

Ans: the oxidation number of K is +1 ; the oxidation number of Ta is +5 ; the oxidation number of F is -1
Category: Easy Section: 4.4
123. Thorium metal is prepared by reacting thorium oxide with calcium.
$\mathrm{ThO}_{2}+2 \mathrm{Ca} \rightarrow \mathrm{Th}+2 \mathrm{CaO}$
Which substance is reduced in this process?
Ans: Th^{4+} is reduced
Category: Medium Section: 4.4
124. Thorium metal is prepared by reacting thorium oxide with calcium.
$\mathrm{ThO}_{2}+2 \mathrm{Ca} \rightarrow \mathrm{Th}+2 \mathrm{CaO}$
What is the reducing agent in this process?
Ans: Ca
Category: Medium Section: 4.4
125. Thorium metal is prepared by reacting thorium oxide with calcium.
$\mathrm{ThO}_{2}+2 \mathrm{Ca} \rightarrow \mathrm{Th}+2 \mathrm{CaO}$
Which substance is oxidized in this process?
Ans: Ca
Category: Medium Section: 4.4
126. Thorium metal is prepared by reacting thorium oxide with calcium.
$\mathrm{ThO}_{2}+2 \mathrm{Ca} \rightarrow \mathrm{Th}+2 \mathrm{CaO}$
What is the oxidizing agent in this process?
Ans: ThO_{4}
Category: Medium Section: 4.4
127. Batteries in our cars generate electricity by the following chemical reaction.
$\mathrm{Pb}+\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Which substance is reduced in this process?
Ans: Pb^{4+}
Category: Medium Section: 4.4
128. Batteries in our cars generate electricity by the following chemical reaction.
$\mathrm{Pb}+\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
What is the reducing agent in this process?
Ans: Pb
Category: Medium
129. Batteries in our cars generate electricity by the following chemical reaction.
$\mathrm{Pb}+\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Which substance is oxidized in this process?
Ans: Pb
Category: Medium Section: 4.4
130. Batteries in our cars generate electricity by the following chemical reaction.
$\mathrm{Pb}+\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
What is the oxidizing agent in this process?
Ans: PbO_{2}
Category: Medium Section: 4.4
131. Describe the procedure used to make 3.0 liters of a 2.0 M KCl solution, starting with solid KCl and water.
Ans: Determine the molar mass of KCl , which is $74.55 \mathrm{~g} / \mathrm{mol}$; weigh out 447.3 grams (6 mol) of KCl ; dissolve the KCl in enough water to form exactly 3 liters of solution.
Category: Medium Section: 4.5
132. What is the molarity of a solution that contains 5.0 moles of solute in 2.00 liters of solution?
Ans: 2.5 M
Category: Easy Section: 4.5
133. The solubility of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is 130.5 grams per liter at $0^{\circ} \mathrm{C}$. How many moles of dissolved salt are present in 4.0 liters of a saturated solution of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ at $0^{\circ} \mathrm{C}$?
Ans: 2.0 moles
Category: Medium Section: 4.5
134. What is the molar concentration of chloride ions in a solution prepared by mixing 100.
mL of 2.0 M KCl with $50 . \mathrm{mL}$ of a 1.5 M CaCb solution?
Ans: 2.3 M
Category: Difficult
135. What volume of concentrated nitric acid $(15.0 \mathrm{M})$ is required to make 100 mL of a 3.0 M nitric acid solution?
Ans: 20. mL
Category: Medium Section: 4.5
136. During a titration the following data were collected. A $10 . \mathrm{mL}$ portion of an unknown monoprotic acid solution was titrated with $1.0 \mathrm{M} \mathrm{NaOH} ; 40 . \mathrm{mL}$ of the base were required to neutralize the sample. What is the molarity of the acid solution?
Ans: 4.0 M
Category: Medium Section: 4.7
137. During a titration the following data were collected. A $10 . \mathrm{mL}$ portion of an unknown monoprotic acid solution was titrated with $1.0 \mathrm{M} \mathrm{NaOH} ; 40 . \mathrm{mL}$ of the base were required to neutralize the sample. How many moles of acid are present in 2.0 liters of this unknown solution?
Ans: 8.0 moles
Category: Medium Section: 4.7
138. If 145 grams of potassium nitrate were added to water to make $1,500 \mathrm{~mL}$ of solution, what would be the molarity of the resulting solution?
Ans: 0.956 M
Category: Medium Section: 4.5
139. During a titration the following data were collected. A 50.0 mL portion of an HCl solution was titrated with $0.500 \mathrm{M} \mathrm{NaOH} ; 200 . \mathrm{mL}$ of the base was required to neutralize the sample. How many grams of HCl are present in $500 . \mathrm{mL}$ of this acid solution?
Ans: 36.5 g
Category: Medium Section: 4.7
140. Identify the following as either a good or poor conductor of electricity: a crystal of $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
Ans: poor
Category: Easy Section: 4.1
141. Identify the following as either a good or poor conductor of electricity: an aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
Ans: good
Category: Easy Section: 4.1
142. Identify the following as either a good or poor conductor of electricity: gasoline $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$.

Ans: poor
Category: Easy Section: 4.1
143. Which substance is acting as a Brønsted acid in the following reaction?
$\mathrm{HSO}_{4}^{-}+\mathrm{NH}_{4}^{+} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NH}_{3}$
Ans: $\mathrm{NH}_{4}{ }^{+}$
Category: Medium Section: 4.3
144. Identify the $\mathrm{Br} ø$ nsted acid in the following reaction.
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
Ans: $\mathrm{H}_{2} \mathrm{O}$
Category: Medium Section: 4.3
145. Write balanced molecular and net ionic equations for the reaction that would occur between $\mathrm{CaCb}(\mathrm{aq})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$. Be sure to include the correct states in your final equations. If no reaction is expected, write "no reaction."
Ans: Molecular equation: $\mathrm{CaCb}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})$
Net ionic equation: $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$
Category: Medium Section: 4.2
146. Write balanced molecular and net ionic equations for the acid-base neutralization reaction between $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ and $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$. Be sure to include the correct states in your final equations. If no reaction is expected, write "no reaction."
Ans: Molecular equation: $2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Net ionic equation: $2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{Ba}^{2+}(\mathrm{aq})+6 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Category: Difficult Section: 4.3
147. Write balanced molecular and net ionic equations for the reaction that would occur between $\mathrm{Al}(\mathrm{s})$ and $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$. Be sure to include the correct states in your final equations. If no reaction is expected, write "no reaction."
Ans: Molecular equation: $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3 \mathrm{Co}(\mathrm{s})$
Net ionic equation: $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Co}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Co}(\mathrm{s})$
Category: Medium Section: 4.4
148. Write balanced molecular and net ionic equations for the reaction that would occur between $\mathrm{CuCb}(\mathrm{aq})$ and $\mathrm{Pb}(\mathrm{s})$. Be sure to include the correct states in your final equations. If no reaction is expected, write "no reaction."
Ans: Molecular equation: $\mathrm{CuCb}(\mathrm{aq})+\mathrm{Pb}(\mathrm{s}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{PbCb}(\mathrm{s})$
Net ionic equation: $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{C} \Gamma(\mathrm{aq})+\mathrm{Pb}(\mathrm{s}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{PbCb}_{2}(\mathrm{~s})$
Category: Difficult Section: 4.4
149. A piece of copper metal was added to an aqueous solution of silver nitrate, and within a few minutes it was observed that a grey crystalline solid formed on surface of the copper and the solution turned a blue color characteristic of copper(II) ions.
Write the balanced chemical equation for this reaction.
Ans: $\mathrm{Cu}(\mathrm{s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
Category: Medium Section: 4.4
150. A piece of copper metal was added to an aqueous solution of silver nitrate, and within a few minutes it was observed that a grey crystalline solid formed on surface of the copper and the solution turned a blue color characteristic of copper(II) ions.
Write the net ionic equation for this reaction.
Ans: $\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
Category: Medium Section: 4.4
151. A piece of lead metal was added to an aqueous solution of copper(II) nitrate, and within a few minutes it was observed that the lead turned black and crumbled, and the blue solution characteristic of copper(II) ions faded. (NOTE: Lead forms a $2+$ ion when it reacts.)
Write the balanced chemical equation for this reaction.
Ans: $\mathrm{Pb}(\mathrm{s})+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
Category: Medium Section: 4.4
152. A piece of lead metal was added to an aqueous solution of copper(II) nitrate, and within a few minutes it was observed that the lead turned black and crumbled, and the blue solution characteristic of copper(II) ions faded. (NOTE: Lead forms a $2+$ ion when it reacts.)
Write the net ionic equation for this reaction.
Ans: $\mathrm{Pb}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
Category: Medium Section: 4.4
153. A piece of zinc metal was added to an aqueous solution of lead(II) nitrate. After some time it was observed that the zinc metal had appeared to fall apart and a solid had accumulated at the bottom of the reaction vessel.
Write the balanced chemical equation for this reaction.
Ans: $\mathrm{Zn}(\mathrm{s})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{Pb}(\mathrm{s})+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
Category: Difficult Section: 4.4
154. A piece of zinc metal was added to an aqueous solution of lead(II) nitrate. After some time it was observed that the zinc metal had appeared to fall apart and a solid had accumulated at the bottom of the reaction vessel.
Write the net ionic equation for this reaction.
Ans: $\mathrm{Zn}(\mathrm{s})+\mathrm{Pb}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Pb}(\mathrm{s})$
Category: Difficult Section: 4.4
155. The following experiments were carried out and observations recorded.

Expt. \#1: copper metal was added to an aqueous solution of silver nitrate Observation: The copper become coated with a substance.
Expt. \#2: lead metal was added to an aqueous solution of copper(II) nitrate
Observation: The lead turned black and crumbled.
Expt. \#3: zinc metal was added to an aqueous solution of lead(II) nitrate
Observation: The zinc appeared to fall apart.
Rank the metals from most active to least active.
Ans: most active Zn , next most active Pb , next most active Cu , least active Ag
Category: Difficult Section: 4.4
156. Write a balanced molecular equation for the reaction that occurs when aqueous solutions of potassium iodide and lead(II) nitrate are combined.
Ans: $2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
Category: Medium Section: 4.2
157. If 73.5 mL of $0.200 \mathrm{M} \mathrm{KI}(\mathrm{aq})$ was required to precipitate all of the lead(II) ion from an aqueous solution of lead(II) nitrate, how many moles of Pb^{2+} were originally in the solution?
Ans: 7.35×10^{-3} moles of Pb^{2+}
Category: Medium Section: 4.6
158. Sugar dissolves in water, therefore it is a strong electrolyte.

Ans: False Category: Medium Section: 4.1
159. Silver chloride (AgCl) has an extremely low solubility in water; therefore, it is a weak electrolyte.
Ans: False Category: Medium Section: 4.1
160. Most compounds containing chlorides, bromides, and iodides are soluble except those containing $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}$, and Pb^{2+}.
Ans: True Category: Easy Section: 4.2
161. The following reaction is an acid-base neutralization reaction.
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{CaBr}_{2}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{g})$
Ans: False Category: Easy Section: 4.3
162. The oxidation number of N in NO is +7 .

Ans: False Category: Easy Section: 4.4
163. Hydrogen is oxidized in the following chemical reaction.
$\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
Ans: True Category: Medium Section: 4.4
164. The following equation is an example of a net ionic equation.
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgBr}(\mathrm{s})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$
Ans: False Category: Medium Section: 4.2
165. The oxidation number of iodine increases by 6 in the following reaction.
$2 \mathrm{MnO}_{4}^{-}+\mathrm{I}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MnO}_{2}+\mathrm{IO}_{3}^{-}+2 \mathrm{OH}^{-}$
Ans: True Category: Medium Section: 4.4
166. A weak acid or a weak base ionizes completely.

Ans: False Category: Medium Section: 4.3
167. The following reaction is a redox reaction.
$\mathrm{CaC}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HCCH}(\mathrm{g})+\mathrm{CaO}(\mathrm{s})$
Ans: False Category: Medium Section: 4.4

